TECHNICKÁ UNIVERZITA V LIBERCI

Fakulta mechatroniky a mezioborových inžený
rských studií

$\check{\mathrm{R}}$ ízení teploty proudícího vzduchu

Liberec 2008

 ${\bf M} {\rm artin}$ Blížkovský, Viktor Bubla

Naměřená data

Na následujícím grafu je zobrazena proměnná \boldsymbol{u} a proměnná $\boldsymbol{y}.$

ujsme manuálně nastavovali výkon do topné spirály
ayodpovídá teplotě vzduchu měřeného pomocí teplotního
 čidla umístěného před ústím ohřívače.

Strejcova metoda

$$T_U = 0,61$$
$$T_N = 5,72$$
$$\tau_U = \frac{T_U}{T_N} = 0,107$$
$$t_i = 1,82$$

Soustava je tedy druhého řádu a budeme ji počítat bez dopravního zpoždění. Z tabulky vyčteme poměry $T_U/T = 0,282$ a $T_N/T = 2,718$, odkud vypočítáme T a společně s hodnotou určenou pomocí t_i ze vztahu $T = t_i/(n-1)$ vypočteme T jako vážený aritmetický průměr.

$$T = 2,071s$$

Statické zesílení určíme z hodnot Δu a Δy odečtených z grafu

Určili jsme obrazový přenos soustavy

$$F = \frac{K}{(Ts+1)^n} = \frac{0,08}{4,289 \cdot s^2 + 4,142 \cdot s + 1}$$

Simulované charakteristiky

Pokud bychom naši soustavu vybudili diracovým impulsem, jeho odezva by dle simulace měla následující podobu

Dle určeného statického zesílení jsme sestrojili statickou charakteristiku

Laplaceova transformace

Pomoci L. T. jsme převedli obrazový přenos získaný strejcovou metodou na analytickou funkci

$$F = \frac{K}{(Ts+1)^n} = \frac{0,08}{(2,071 \cdot s + 1)^2}$$
$$F = \frac{K}{(s+a)^n} \quad \div \quad K \cdot \frac{1}{(n-1)!} \cdot t^{n-1} \cdot e^{at} \cdot \eta(t) = 0,08 \cdot t \cdot e^t \cdot \eta(t)$$

V následujícím grafu jsou společně zakresleny naměřený průběh teploty soustavy a průběh simulovaný v Matlabu

Buzení harmonickým signálem

Soustavu jsme budili sinusovým signálem s nulovou počáteční fází, úhlovou frekvencí $\omega=0,05\,rad/s$ a amplitudou 1. Při tomto buzení byl přenos soustavy

$$A = \frac{y}{u} = \frac{0,079}{1} = 0,079$$

což můžeme vdBvyjádřit jako přenos

$$A_{dB} = 20 \cdot \log A = -22 \, dB$$

Odečetli jsme fázový posun

$$\phi = \frac{2 \cdot \pi \cdot 4}{84} = 0,3 \, rad$$

Vyšetření stability

Standardní regulační obvod

Vycházeli jsme z přenosu

$$F_{ew} = \frac{1}{1 + R \cdot S} =$$

$$= \frac{1}{1 + (r_0 + \frac{r_1}{s}) \cdot \left(\frac{0.08}{4.289 \cdot s^2 + 4.142 \cdot s + 1}\right)} =$$

$$=\frac{4289\cdot s^3 + 4142\cdot s^2 + 1000\cdot s}{4289\cdot s^3 + 4142\cdot s^2 + (80\cdot r_0 + 1000)\cdot s + 80\cdot r_1}$$

Odkud jsme vytvořili Hurwitzovu matici

$$H = \begin{bmatrix} 4142 & 80 \cdot r_1 & 0\\ 4289 & 80 \cdot r_0 + 1000 & 0\\ 0 & 4142 & 80 \cdot r_1 \end{bmatrix}$$

A její determinanty jsme dále prověřovali

$$H_1 = 4142$$

$$H_{2} = \begin{vmatrix} 4142 & 80 \cdot r_{1} \\ 4289 & 80 \cdot r_{0} + 1000 \end{vmatrix} = 4142 (80 \cdot r_{0} + 1000) - 343120 \cdot r_{1}$$
$$H_{3} = \begin{vmatrix} 4142 & 80 \cdot r_{1} & 0 \\ 4289 & 80 \cdot r_{0} + 1000 & 0 \\ 0 & 4142 & 80 \cdot r_{1} \end{vmatrix} = 331360 (80 \cdot r_{0} + 1000) \cdot r_{1} - 27449600 \cdot r_{1}^{2}$$

Výsledkem našeho snažení je několik nerovnic, které nám říkají, v jakých mezích můžeme nastavit PI regulátor

$$\begin{array}{c} r_0 > -12, 5 \\ r_1 > 0 \\ r_1 < 0, 96 \cdot r_0 + 12, 1 \end{array}$$

Vynesením do grafu získáme grafické znázornění této oblasti stability

Vyhodnocení

Co se samotného měření týka, vše proběhlo bez problému. Zpracování výsledků však vyvolává řadu otázek a pochybností. Zejména odečítání hodnot z grafu je achylovou patou celého našeho snažení, v němž vzniklé chyby se dále projevují ve všech dalších výpočtech a simulacích. Vzhledem k tomu, že toto měření je pro nás nečím novým a nemáme s ním předchozí praktické zkušenosti, nemůžeme vypočtené hodnoty porovnat s empiricky odhadnutými a tedy jen těžko se můžeme orientovat ve správnosti či nesprávnosti dosažených výsledků.